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1. Introduction

The differential quadrature (DQ) method, introduced by Bellman and Casti in 1971 [1], has
drawn caused much attention in recent years owing to its favorable features, such as the method is
simple and can yield highly accurate results with only a few grid points for certain problems. In
1988, Bert and his co-workers first applied the DQ method to solve structural mechanics problems
[2,3]. Refs. [4–6] give the details on the development and applications of the DQ method.
Since the DQ method has only the function values at grid points as the independent variables,

difficulty arises for applying the boundary conditions, if the number of boundary conditions is
greater than one. Bert and his co-workers [2,3] introduced a d-point apart from the boundary
point by a small distance as an additional boundary point and applied the other boundary
condition at that point. It is found [2,3,7] that, however, the solution accuracy may not be assured
since d is problem-dependent. Alternatively, some DQ equations at inner grid points can be
replaced by the additional boundary conditions. It is found that, however, the solution accuracy
may vary depending on which DQ equations at inner grids are replaced by the boundary
conditions [6].
A new method to apply the boundary conditions to increase the solution accuracy has been

introduced by the first author [8]. The essential idea is to build the boundary conditions during
formulation of the weighting coefficients for higher order derivatives. But the method cannot be
used for all boundary conditions. Later Malik and Bert [9] tried to extend this idea to apply all
boundary conditions, however, the d-point has to be introduced for some combinations of
boundary conditions. Detailed discussions on the way to implement boundary conditions in DQ
method can be found in the excellent introduction of Ref. [10].
As has been noticed, that the conventional DQ method lacks some flexibility to solve real

structural problems. Striz et al. [11] first introduced the quadrature element method (QEM) to
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analyze beam structures with various loads, including discontinuous loads. However, the method
is not quite convenient and accurate since the d-point is introduced to establish the element
equations. Later Wang et al. [12] proposed a method to remove the d-point in QEM by assigning
two degrees of freedom to each end point for a fourth order differential equation. The method is
called the differential QEM or simply DQEM. All boundary conditions can be easily applied by
the DQEM and accurate solutions can be obtained. The same idea is independently proposed
by Chen et al. [13]. Bert and his co-workers [14,15] also introduced another version of DQ element
by using the weak form similar to the high order finite element. Han and Liew [16] first introduced
the DQEM for thick plates. A variety of structure problems have been solved with the various
proposed differential QEMs [12–20] since then. Recently, Wu and his co-workers [10,21–23]
proposed a generalized differential quadrature rule (GDQR). The GDQR constructs the DQ in a
general situation and can easily deal with any problems involving more than one condition at any
discrete point. The explicit weighting coefficients of the GDQR are also derived and a variety of
problems involving higher order (third, fourth, sixth and eighth order) differential equations have
been successfully solved. For plate problems, only three degrees of freedom are used for corner
points in the GDQR to deal with the three independent boundary conditions while four degrees of
freedom have to be used in the DQEM [14,15,19].
In this paper, a new version of differential QEM is introduced. The new method is similar

to the DQEM [12,13] or GDQR [10,21–23] in the way that the number of degrees of freedom
is the same as the number of the independent boundary conditions at the boundary points,
but the essential difference from the DQEM or GDQR is that the weighting coefficient of
the first order derivative is exactly the same as that of the conventional DQ method. More
specifically, the weighting coefficients are determined by the Hermite interpolation shape function
in the GDQR or DQEM, but are determined by the Lagrange interpolation function for the
present method and the explicit formulae are provided by Quan and Chang [24] and Shu and
Richards [25]. The multiple degrees of freedoms are introduced merely for the application of
boundary conditions, therefore, the additional degree of freedom for the beam case is not
necessary for the rotation. It could also be the curvature. The present method is also different
from the conventional DQ method in the way of formulating the weighting coefficients of higher
order derivatives. In what follows, the new idea to determine the weighting coefficients of higher
order derivatives is described first, the new version of DQEM is then formulated; followed by the
applications to analysis of free vibration problems of beams and beam structures; finally,
conclusions are drawn based on the results presented herein and some future research works are
pointed out.

2. The new version of DQ method and DQ element method

For simplicity and purpose of illustrations, one-dimensional problems are considered herein. In
the ordinary DQ method, the solution function wðxÞ can be assumed as

wðxÞ ¼
XN

j¼1

LjðxÞwj; ð1Þ
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where N; LjðxÞ and wj are the total number of grid points in the entire domain including
the end points, the Lagrange interpolation function and the solution values at grid point j;
respectively.
Then the kth order derivative of the solution function at grid point i can be computed by

w
ðkÞ
i ¼

XN

j¼1

L
ðkÞ
j ðxiÞwj ¼

XN

j¼1

Eijwj ði ¼ 1; 2;y;NÞ; ð2Þ

where Eij are called the weighting coefficients of the kth order derivative.
Thus, the ordinary differential governing equations can be approximated by a set of algebraic

equations with unknowns of wj in terms of DQ method. When appropriate boundary conditions
are applied, a unique solution can be obtained.
Let Aij be the weighting coefficients of the first order derivative, which can be computed

explicitly by [6,24,25]

Aij ¼
o0

NðxiÞ
ðxi � xjÞo0

NðxjÞ
ðiajÞ; Aii ¼

XN

j¼1;iaj

1

ðxi � xjÞ
; ð3Þ

where

oNðxÞ ¼ ðx � x1Þðx � x2Þ?ðx � xi�1Þðx � xiÞðx � xiþ1Þ?ðx � xNÞ;

o0
NðxÞ ¼ ðx � x1Þðx � x2Þ?ðx � xi�1Þðx � xiþ1Þ?ðx � xNÞ:

The weighting coefficients of second, third, and fourth order derivatives, Bij ;Cij;Dij; can be
computed by

Bij ¼
XN

k¼1

AikAkj; Cij ¼
XN

k¼1

AikBkj; Dij ¼
XN

k¼1

BikBkj : ð4Þ

The essence of the new way to apply the boundary conditions is that two degrees of freedom at
each end point, similar to the DQEM in references [12,13], are introduced for a fourth order
differential equation. It should be mentioned that the present method is readily extended to higher
order differential equations, but three or four degrees of freedom at each end point should be
introduced for a sixth or eight order differential equation. It is also noticed that the present
method is, however, different from the QEM [11] since the d method is not used, and from the
DQEM [12,13] since the weighting coefficients of second, third, and fourth order derivatives at
inner points are computed differently by

w00
i ¼

XN

j¼1

Bijwj ¼
XN

j¼1

XN

k¼1

AikAkjwj;

w000
i ¼ Ai1w

00
1 þ AiNw00

N þ
XN

j¼1

XN�1

k¼2

AikBkjwj; ð5Þ

wIVi ¼ Bi1w
00
1 þ BiNw00

N þ
XN

j¼1

XN�1

k¼2

BikBkjwj ði ¼ 2; 3;y;N � 1Þ:
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The weighting coefficients of second, and third order derivatives at end points are computed by

w00
1 ¼ A11w

0
1 þ A1Nw0

N þ
XN

j¼1

XN�1

k¼2

A1kAkjwj ¼
XNþ2

j¼1

%B1jdj;

w00
N ¼ AN1w

0
1 þ ANNw0

N þ
XN

j¼1

XN�1

k¼2

ANkBkjwj ¼
XNþ2

j¼1

%BNjdj; ð6aÞ

where fdgT ¼ fw1;w0
1;wN ;w0

N ;w2;y;wN�1g:

w000
1 ¼ A11w

00
1 þ A1Nw00

N þ
XN

j¼1

XN�1

k¼2

A1kBkjwj;

w000
N ¼ AN1w

00
1 þ ANNw00

N þ
XN

j¼1

XN�1

k¼2

ANkBkjwj: ð6bÞ

It is seen that the weighting coefficients of the second order derivatives are computed differently
at the inner grid by Eq. (5) and at end points by Eq. (6a). This is the key step for success by
extending the method in Refs. [8,9] without the d method. Similar procedures can be used for
determining the weighting coefficients used for the six or eight order differential equations. Since
the degrees of freedom at the end points are w1;w0

1;wN ;w0
N ; substituting Eq. (6a) into Eq. (5) and

Eq. (6b) yields

w00
i ¼

XNþ2

j¼1

%Bijdj; w000
i ¼

XNþ2

j¼1

%Cijdj; wIVi ¼
XNþ2

j¼1

%Dijdj ði ¼ 2; 3;y;N � 1Þ; ð7aÞ

w000
1 ¼

XNþ2

j¼1

%C1jdj; w000
N ¼

XNþ2

j¼1

%CNjdj: ð7bÞ

For the case of a Bernoulli–Euler beam under loadings, the governing differential equation can
be expressed as

EI
d4w

dx4
� P

d2w

dx2
� qðxÞ þ rA

d2w

dx2
¼ 0 ðxA½0;L
Þ; ð8Þ

where E; I ; L; qðxÞ; P; r; and A are Young’s modulus, the principal moment of inertia about the
y-axis, the beam length, the distributed load, the axial load, mass density and the cross-sectional
area, respectively. The shear force QðxÞ and bending moment MðxÞ are

EI
d3w

dx3
¼ QðxÞ; EI

d2w

dx2
¼ MðxÞ ðxA½0;L
Þ: ð9Þ

Eqs. (8) and (9) can be expressed in terms of the weighting coefficients by utilizing the DQ
method. Various boundary conditions can be easily applied and unique solution can be obtained
for the beam subjected to static and dynamic loadings.
The formulation of the new version of DQ beam element is exactly the same as the

one presented in Refs. [12,17], once the weighting coefficients are determined by using Eqs. (3),
(6a), (7a) and (7b). The DQ element equation for a Bernoulli–Euler beam can be
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symbolically written as

½K 
fdg ¼ fFg; ð10Þ

where ½K
; fdg; fFg are called the DQ weighting coefficient matrix, generalized displacement
vector, and generalized load vector, respectively. Details may be found in Ref. [17] since the only
difference between the new version DQEM and the DQEM in Ref. [17] is the way the weighting
coefficients are determined.

3. Applications and discussions

As the first example, consider the flexural vibration of prismatic beams with six combinations of
boundary conditions, i.e., SS–SS, SS–C, SS–F, C–C, C–F, and F–F, where SS, C and F denote the
simply supported, clamped and free boundaries, respectively. Use one DQ element method to
solve this problem. The new version of DQEM equations is the same for all boundary conditions
and is given by

EI
PNþ2

j¼1
%C1jdj

�EI
PNþ2

j¼1
%B1jdj

�EI
PNþ2

j¼1
%CNjdj

EI
PNþ2

j¼1
%BNjdj

EI
PNþ2

j¼1
%D2jdj

EI
PNþ2

j¼1
%D3jdj

y

EI
PNþ2

j¼1
%DN�1;jdj

2
666666666666666664

3
777777777777777775

¼

Q1

M1

QN

MN

rAo2w2
rAo2w3

y

y

rAo2wN�1

2
66666666666666664

3
77777777777777775

: ð11Þ

The negative sign introduced in the second and third equations in the above equation is merely
for convenience of assembling the global weighting coefficients for a beam structure. In other
words, generalized forces of a beam element at both ends are in the same direction, similar to the
finite element formulations. Eq. (11) can be rewritten in the following partition form for all
boundary conditions, namely,

KeeKei

KieKii

" #
de

di

( )
¼

Fe

rAo2fdig

( )
; ð12Þ

where subscripts e and i denote the two end points and all internal points, respectively.
Multiplying out Eq. (12) yields

½Kee
fdeg þ ½Kei
fdig ¼ fFeg;

½Kie
fdeg þ ½Kii
fdig ¼ rAo2fdig:
ð13Þ

Thus,

fdeg ¼ ½Kee
�1ðfFeg � ½Kei
fdigÞ: ð14Þ
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Substituting Eq. (14) into the second equation of Eq. (13) yields

ð½Kii
 � ½Kie
½Kee
�1½Kei
Þfdig ¼ rAo2fdig � ½Kie
½Kee
�1fFeg: ð15Þ

For free vibration analysis of beams, ½Kie
½Kee
�1fFeg will not appear in the final equation. It is
either zero due to zero generalized forces or eliminated due to zero generalized displacements. For
example, d1 ¼ w1 ¼ 0; d2 ¼ w0

1 ¼ 0 if the left end of the beam (x ¼ 0) is clamped, thus the first
two equations in Eq. (11) can be dropped; d1 ¼ w1 ¼ 0; M1 ¼ 0 if the left end of the beam (x ¼ 0)
is simply supported, thus the first equation in Eq. (11) can be dropped; d2 ¼ w0

1 ¼ 0; Q1 ¼ 0 if the
left end of the beam (x ¼ 0) is a sliding type, thus the second equation in Eq. (11) can be dropped;
and if the left end of the beam (x ¼ 0) is free, Q1 ¼ 0; M1 ¼ 0: Therefore, the equation to obtain
the frequencies of beams with various boundary conditions can be symbolically written as

½ %K
fdig ¼ rAo2L4=EIfdig ¼ %o2fdig: ð16Þ

Solving Eq. (16) yields frequencies. The fundamental frequencies are listed in Table 1 for
various boundary conditions and compared with the analytical solutions by Leissa [26]. It can be
seen that good accuracy is achieved by the DQ element method with N ¼ 9: To expedite the
convergence rate, the following non-uniform grid spacing is used in the analysis, namely,

xi ¼
L

2
1� cos

kp
N � 1


 �
ðk ¼ 0; 1;y;N � 1Þ: ð17Þ

This example demonstrates a new way to apply the boundary conditions. The new approach is not
only as convenient as the original method proposed by Bert et al. [2,3], but also as accurate as the
method proposed by Wang and Bert [8] and Wang et al. [12]. Therefore, the proposed method is also
recommended for use in practice. It should be pointed out, however, that the formulae to compute
weighting coefficients are entirely different from those given in Refs. [10,12–14,17–19,21–23].
Next consider a fixed-end portal frame shown in Fig. 1. For simplicity, E; r; A; I ; and L for all

three members are assumed the same. When such frame vibrates, the motion is predominantly
flexural. It is customary to assume that the frame is inextensible (u9 ¼ u17). The procedures to
obtain the weighting coefficient matrix for a structure are similar to the finite element method but
in a strong form, namely, w;w0 are assumed the same at the common grid points and the
equilibrium equations are set at all common grid points. After imposing the appropriate boundary
conditions, unique solutions can be obtained for the structure under static and dynamic loadings.
Details may be found, for example, in Refs. [17,27]. It should be mentioned that concentrated
inertial forces ðrALo2u9=2Þ are added at points 9 and 17 in Fig. 1 along the x direction to account
for the movement of the inextensible beam element 2 in the x direction. The zero displacements of
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Table 1

Fundamental frequency ð %oÞ of beams with various boundary conditions ð %o ¼ L2o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=EI

p
;N ¼ 9Þ

BCs SS–SS C–SS or F–SSa C–F C–C or F–Fa

Present 9.8696 15.418 3.5160 22.373 or 22.374b

Leissa [26] 9.8696 15.418 3.5160 22.373

aThe smallest non-zero frequency.
bThe BC is F–F.
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rotations for the portal frame shown in Fig. 1 are u1;w1;w0
1; u25;w25;w0

25; w9 and w17: When the
vibration modes are symmetric, u9 ¼ u17 ¼ 0; which will be automatically satisfied in the analysis.
It is known that the first two lowest eigenvalues are corresponding to the antisymmetric and
symmetric modes [27,28]. The natural frequencies for the lowest antisymmetric and symmetric
modes are determined by using the new version of DQ element method. Nine grid points are used
for each beam element. The results are shown in Table 2. It can be seen that the results agree very
well with the analytical solutions and the previous DQEM results when the same order
polynomial is used to determine the weighting coefficients.

4. Summary remarks

A new formulation to compute the weighting coefficients has been presented in detail based on
the extension of the way to apply the boundary conditions in Ref. [8] without the usage of the d
method. Then a new differential QEM is introduced following the same procedures as in
Refs. [12,17]. The essential difference between the present method and the DQEM in Ref. [12] and
GDQR in Refs. [10,21–23] is the way to compute the weighting coefficients. The present version of
DQEM has also provided a new approach to apply the boundary conditions to the conventional
differential quadrature method. The present formulations of the weighting coefficients can be
extended to sixth or eight order differential equations without any difficulties. Based on the
numerical results, it is found that the present DQ element method combines the attractive features
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Fig. 1. Portal frame structure discretized by three DQ beam elements.

Table 2

Frequencies of the portal frame ð %o ¼ oL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=EI

p
Þ

%o Analytical [27,28] DQ7N [17] Present

Asymmetric 3.2046 3.2046 3.2046

Symmetric 12.648 12.648 12.648
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of rapid convergence and the high accuracy of the DQM with the generality of the FEM
formulations for application to structural analyses. Although there is not much difference
between the present DQ element method and the existing DQEM in the literature for one-
dimensional problems, the method is, however, readily extended to two-dimensional problems.
Preliminary results show that numerical instability problems encountered by the previous DQEM
in solving two-dimensional problems is overcome by the present method since only three degrees
of freedom (the same as the GDQR) is needed for the corner point of a rectangular plate element.
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